Problem: Determine the magnitude of the moment of each of the three forces about the axis AB. Solve the problem (a) using a Cartesian vector approach and (b) using a scalar approach
Variable Solution:
Variable Solution:
Givens:
F1 = 60 [N]
F2 = 85 [N]
F3 = 45 [N]
a = 1.5 [m]
b = 2 [m]
Numerical Solution:
MAB(F1) (scalar) = b⋅F1⋅sin(tan-1(a/b))
→(2 [m])(60 [N])⋅sin(tan-1((1.5 [m])/(2 [m])))
MAB(F1) = 72 [N⋅m]
MAB(F1) (vector) = ab⋅f1⋅(a2+b2)-1/2
→(1.5 [m])(2 [m])(60 [N])⋅((1.5 [m])2+(2 [m])2)-1/2
MAB(F1) = 72 [N⋅m]
MAB(F2) (scalar) = 0
MAB(F2) (vector) = 0
MAB(F3) (scalar) = 0
MAB(F3) (vector) = 0
F1 = 60 [N]
F2 = 85 [N]
F3 = 45 [N]
a = 1.5 [m]
b = 2 [m]
Numerical Solution:
MAB(F1) (scalar) = b⋅F1⋅sin(tan-1(a/b))
→(2 [m])(60 [N])⋅sin(tan-1((1.5 [m])/(2 [m])))
MAB(F1) = 72 [N⋅m]
MAB(F1) (vector) = ab⋅f1⋅(a2+b2)-1/2
→(1.5 [m])(2 [m])(60 [N])⋅((1.5 [m])2+(2 [m])2)-1/2
MAB(F1) = 72 [N⋅m]
MAB(F2) (scalar) = 0
MAB(F2) (vector) = 0
MAB(F3) (scalar) = 0
MAB(F3) (vector) = 0
No comments:
Post a Comment